Skip to main content
Log in

Unbounded mass radial solutions for the Keller–Segel equation in the disk

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We consider the boundary value problem

$$\begin{aligned}\left\{ \begin{array}{rcll} -\Delta u+ u -\lambda e^u&{}=&{}0,\ u>0 &{} \mathrm {in}\ B_1(0)\\ \partial _\nu u&{}=&{}0&{}\mathrm {on}\ \partial B_1(0), \end{array}\right. \end{aligned}$$

whose solutions correspond to steady states of the Keller–Segel system for chemotaxis. Here \(B_1(0)\) is the unit disk, \(\nu \) the outer normal to \(\partial B_1(0)\), and \(\lambda >0\) is a parameter. We show that, provided \(\lambda \) is sufficiently small, there exists a family of radial solutions \(u_\lambda \) to this system which blow up at the origin and concentrate on \(\partial B_1(0)\), as \(\lambda \rightarrow 0\). These solutions satisfy

$$\begin{aligned}\lim _{\lambda \rightarrow 0} \frac{u_\lambda (0)}{|\ln \lambda |}=0\quad \text{ and }\quad 0<\lim _{\lambda \rightarrow 0} \frac{1}{|\ln \lambda |}\int _{B_1(0)}\lambda e^{u_\lambda (x)}dx<\infty , \end{aligned}$$

having in particular unbounded mass, as \(\lambda \rightarrow 0\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ao, W., Musso, M., Wei, J.: On spikes concentrating on line-segments to a semilinear Neumann problem. J. Differ. Equ. 251(4–5), 881–901 (2011)

    Article  MathSciNet  Google Scholar 

  2. Ao, W., Musso, M., Wei, J.: Triple junction solutions for a singularly perturbed Neumann problem. SIAM J. Math. Anal. 43(6), 2519–2541 (2011)

    Article  MathSciNet  Google Scholar 

  3. Agudelo, O., Pistoia, A.: Boundary concentration phenomena for the higherdimensional Keller–Segel system. Calc. Var. Partial Differ. Equ. 55(6), 31 (2016)

    Article  Google Scholar 

  4. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover, New York (1964)

    MATH  Google Scholar 

  5. Bellomo, N., Bellouquid, A., Tao, Y., Winkler, M.: Toward a mathematical theory of Keller–Segel models of pattern formation in biological tissues. Math. Models Methods Appl. Sci. 25(9), 1663–1763 (2015)

    Article  MathSciNet  Google Scholar 

  6. Bonheure, D., Casteras, J.-B., Noris, B.: Layered solutions with unbounded mass for the Keller–Segel equation. J. Fixed Point Theory Appl. 19(1), 529–558 (2017)

    Article  MathSciNet  Google Scholar 

  7. Bonheure, D., Casteras, J.-B., Noris, B.: Multiple positive solutions of the stationary Keller–Segel system. Calc. Var. Partial Differ. Equ. 56(3), 35 (2017)

    Article  MathSciNet  Google Scholar 

  8. Chen, C.-C., Lin, C.-S.: Sharp estimates for solutions of multi-bubbles in compact Riemann surfaces. Commun. Pure Appl. Math. 55(6), 728–771 (2002)

    Article  MathSciNet  Google Scholar 

  9. del Pino, M., Kowalczyk, M., Musso, M.: Singular limits in Liouville-type equations. Calc. Var. Partial Differ. Equ. 24(1), 47–81 (2005)

    Article  MathSciNet  Google Scholar 

  10. del Pino, M., Musso, M., Román, C., Wei, J.: Interior bubbling solutions for the critical Lin-Ni-Takagi problem in dimension 3. J. Anal. Math. 137(2), 813–843 (2019)

    Article  MathSciNet  Google Scholar 

  11. del Pino, M., Pistoia, A., Vaira, G.: Large mass boundary condensation patterns in the stationary Keller–Segel system. J. Differ. Equ. 261(6), 3414–3462 (2016)

    Article  MathSciNet  Google Scholar 

  12. del Pino, M., Román, C.: Large conformal metrics with prescribed sign-changing Gauss curvature. Calc. Var. Partial Differ. Equ. 54(1), 763–789 (2015)

    Article  MathSciNet  Google Scholar 

  13. del Pino, M., Wei, J.: Collapsing steady states of the Keller–Segel system. Nonlinearity 19(3), 661–684 (2006)

    Article  MathSciNet  Google Scholar 

  14. Grossi, M.: Asymptotic behaviour of the Kazdan–Warner solution in the annulus. J. Differ. Equ. 223(1), 96–111 (2006)

    Article  MathSciNet  Google Scholar 

  15. Horstmann, D.: From 1970 until present: the Keller-Segel model in chemotaxis and its consequences. I, Jahresber. Deutsch. Math. Verein. 105(3), 103–165 (2003)

    MathSciNet  MATH  Google Scholar 

  16. Horstmann, D.: From 1970 until present: the Keller-Segel model in chemotaxis and its consequences. II, Jahresber. Deutsch. Math. Verein. 106(2), 51–69 (2004)

    MathSciNet  MATH  Google Scholar 

  17. Keller, E.F., Segel, L.A.: Initiation of slime mold aggregation viewed as an instability. J. Theor. Biol. 26(3), 399–415 (1970)

    Article  MathSciNet  Google Scholar 

  18. Lin, C. S., Ni, W.-M.: On the diffusion coefficient of a semilinear Neumann problem. Calc. Variat. Partial Differ. Equ. 160–174 (1988)

  19. Lin, C.-S., Ni, W.-M., Takagi, I.: Large amplitude stationary solutions to a chemotaxis system. J. Differ. Equ. 72(1), 1–27 (1988)

    Article  MathSciNet  Google Scholar 

  20. Ni, W.-M.: Qualitative properties of solutions to elliptic problems. Stat. Partial Differ. Equ. I, 157–233 (2004)

    MathSciNet  MATH  Google Scholar 

  21. Ni, W.-M., Takagi, I.: On the Neumann problem for some semilinear elliptic equations and systems of activator-inhibitor type. Trans. Am. Math. Soc. 297(1), 351–368 (1986)

    Article  MathSciNet  Google Scholar 

  22. Pistoia, A., Vaira, G.: Steady states with unbounded mass of the Keller–Segel system. Proc. R. Soc. Edinburgh Sect. A 145(1), 203–222 (2015)

    Article  MathSciNet  Google Scholar 

  23. Schaaf, R.: Stationary solutions of chemotaxis systems. Trans. Am. Math. Soc. 292(2), 531–556 (1985)

    Article  MathSciNet  Google Scholar 

  24. Senba, T., Suzuki, T.: Some structures of the solution set for a stationary system of chemotaxis. Adv. Math. Sci. Appl. 10(1), 191–224 (2000)

    MathSciNet  MATH  Google Scholar 

  25. Senba, T., Suzuki, T.: Weak solutions to a parabolic-elliptic system of chemotaxis. J. Funct. Anal. 191(1), 17–51 (2002)

    Article  MathSciNet  Google Scholar 

  26. Santra, S., Wei, J.: New entire positive solution for the nonlinear Schrödinger equation: coexistence of fronts and bumps. Am. J. Math. 135(2), 443–491 (2013)

    Article  Google Scholar 

  27. Wang, G., Wei, J.: Steady state solutions of a reaction-diffusion system modeling chemotaxis. Math. Nachr. 233(234), 221–236 (2002)

    Article  MathSciNet  Google Scholar 

  28. Wang, L., Wei, J.: Solutions with interior bubble and boundary layer for an elliptic problem. Discrete Contin. Dyn. Syst. 21(1), 333–351 (2008)

    Article  MathSciNet  Google Scholar 

  29. Wei, J., Winter, M.: Mathematical Aspects of Pattern Formation in Biological Systems, Applied Mathematical Sciences, vol. 189. Springer, London (2014)

    MATH  Google Scholar 

Download references

Acknowledgements

This work was initiated with the support of Bonheure’s research grants MIS F.4508.14 and PDR T.1110.14F (FNRS) when C. Román was a Ph.D. student at the Jacques-Louis Lions Laboratory of the Pierre and Marie Curie University, supported by a public grant overseen by the French National Research Agency (ANR) as part of the “Investissements d’Avenir” program (reference: ANR-10-LABX-0098, LabEx SMP) and J-B. Castéras was a research fellow of the FNRS in Belgium. J-B. Castéras is now research fellow of the FCT in Portugal. C. Román is currently supported by the Chilean National Agency for Research and Development (ANID) through FONDECYT Iniciación grant 11190130. He wishes to thank the support and kind hospitality of the Université libre de Bruxelles, where part of this work was done. D. Bonheure is also partially supported by the King Baudouin Foundation - Thelam Funds 2020-J1150080 and by the Advanced ARC grant at ULB - Partial Differential Equations in interaction.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Román.

Additional information

Communicated by Susanna Terracini.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: An elliptic estimate

Appendix A: An elliptic estimate

We show a very rough elliptic estimate which is needed in the proof of Lemma 3.2.

Lemma A.1

Let \(R>0\) and \(u\in H^1 (B_R (0))\) be a radial solution to

$$\begin{aligned} \left\{ \begin{array}{rcll}-\Delta u +u &{}=&{} f&{} \mathrm {in}\ B_R(0)\\ u^\prime (R)&{}=&{}g,&{} \end{array}\right. \end{aligned}$$

for some \(f\in L^q (B_R (0))\), with \(q>2\). Then, we have

$$\begin{aligned} \Vert u\Vert _{L^\infty (B_R (0))} \le C\left[ \left( \dfrac{1}{R}+R\right) R^{1-2/q} \Vert f\Vert _{L^q (B_R (0))}+\left( \dfrac{ 1}{R}+ R^2 \right) \Vert g\Vert _{L^\infty (\partial B_R (0))} \right] \end{aligned}$$

and

$$\begin{aligned}\Vert u' \Vert _{L^\infty (B_R (0))}\le C\left[ R^{1-2/q} \Vert f\Vert _{L^q (B_R (0))}+( 1+ R ) \Vert g\Vert _{L^\infty (\partial B_R (0))} \right] \end{aligned}$$

for some constant C not depending on R.

Proof

Multiplying the equation by u and integrating by parts, we get

$$\begin{aligned} \Vert u\Vert _{H^1 (B_R )}^2 \le \Vert f\Vert _{L^2 (B_R )} \Vert u\Vert _{H^1 (B_R )}+R |u' (R)| |u(R)| . \end{aligned}$$
(A.1)

Since \(u(R)-u(r)=\int _r^R u' (s) ds\), one deduces that

$$\begin{aligned}|u(R)|^2 \le C \left[ |u(r)|^2 +\Vert u'\Vert _{L^2 (B_R )}^2 \ln \dfrac{R}{r} \right] , \end{aligned}$$

where throughout the proof C denotes a constant not depending on R. Multiplying the previous inequality by r and integrating, we find

$$\begin{aligned}R^2 |u(R)|^2 \le C[\Vert u\Vert _{L^2 (B_R )}^2+\Vert u'\Vert _{L^2 (B_R) }^2 R^2 ]. \end{aligned}$$

This implies that

$$\begin{aligned} |u(R)|\le C\left( \dfrac{1}{R}+1 \right) \Vert u\Vert _{H_1 (B_R )}. \end{aligned}$$
(A.2)

From (A.1), (A.2), and \(u' (R)=g\), we obtain that

$$\begin{aligned} \Vert u\Vert _{H^1 (B_R )}^2 \le \Vert f\Vert _{L^2 (B_R )} \Vert u\Vert _{H^1 (B_R)}+C( 1+ R ) \Vert g\Vert _{L^\infty (\partial B_R )} \Vert u \Vert _{H^1 (B_R)} . \end{aligned}$$

Thanks to Hölder inequality, we find that

$$\begin{aligned} \Vert u\Vert _{H^1 (B_R)} \le C[ R^{1-2/q} \Vert f\Vert _{L^q (B_R)} +(1+R) \Vert g\Vert _{L^\infty (\partial B_R)} ] .\end{aligned}$$
(A.3)

Next, observe that for any \(s\in (0,R)\) we can rewrite the equation as

$$\begin{aligned}u' (s) s= \int _0^s (u-f) r dr. \end{aligned}$$

From Hölder inequality, we obtain that

$$\begin{aligned}|u'(s)|\le C \Vert u-f \Vert _{L^2 (B_R ) } \le C (\Vert u\Vert _{L^2 (B_R )}+ R^{1-2/q} \Vert f\Vert _{L^q (B_R)} ). \end{aligned}$$

From (A.3), we deduce that

$$\begin{aligned}\Vert u'\Vert _{L^\infty (B_R )}\le C (R^{1-2/q} \Vert f\Vert _{L^q (B_R )} +(1+R ) \Vert g\Vert _{L^\infty (\partial B_R )} ). \end{aligned}$$

By noting that

$$\begin{aligned}u(R)-u({{\tilde{s}}})= \int _{{{\tilde{s}}}}^R u' (r) dr, \end{aligned}$$

we get from (A.2) that

$$\begin{aligned} \Vert u\Vert _{L^\infty (B_R)}&\le C\left[ \left( \dfrac{1}{R}+1 \right) \Vert u\Vert _{H^1 (B_R)}+ R \Vert u'\Vert _{L^\infty (B_R)}\right] \\&\le C \left[ \left( \dfrac{1}{R}+1+R\right) R^{1-2/q} \Vert f\Vert _{L^q (B_R)} + \left( \dfrac{1}{R}+R^2\right) \Vert g\Vert _{L^\infty (\partial B_R)}\right] . \end{aligned}$$

This concludes the proof. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bonheure, D., Casteras, JB. & Román, C. Unbounded mass radial solutions for the Keller–Segel equation in the disk. Calc. Var. 60, 198 (2021). https://doi.org/10.1007/s00526-021-02081-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-021-02081-8

Mathematics Subject Classification

Navigation